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Abstract

Multimodal medical image fusion integrates com-
plementary information from different imaging
modalities to enhance diagnostic accuracy and
treatment planning. While deep learning meth-
ods have advanced fusion performance, existing
approaches face critical limitations: CNNs excel
at local feature extraction but struggle to model
global context effectively, while Transformers
achieve superior long-range modeling at the cost
of quadratic computational complexity O(N?) in
self-attention mechanisms, limiting clinical de-
ployment. Recent State Space Models (SSMs) of-
fer a promising alternative, enabling efficient long-
range dependency modeling in linear time through
selective mechanisms. Despite these advances,
clinical validation of fused images remains un-
derexplored. In this work, we propose ClinicalF-
Mamba, a novel end-to-end CNN-Mamba hybrid
architecture that synergistically combines local
and global feature modeling. Our approach in-
troduces: Dilated Gated Convolution Blocks for
hierarchical multiscale feature extraction, and a
latent Mamba module that efficiently captures
long-range spatial dependencies between feature
regions and enabling cross-modal fusion in la-
tent space. Comprehensive evaluations on three
datasets demonstrate the superior fusion perfor-
mance across multiple quantitative metrics while
achieving real-time fusion. Notably, we validate
the clinical utility of our approach on the down-
stream brain tumor classification, achieving up to
7% improvements on the AUC score. Our method
establishes a new paradigm for efficient multi-
modal medical image fusion suitable for real-time
clinical deployment.
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1. Introduction

Medical image fusion (MMIF) aggregates complemen-
tary information from multiple modalities (e.g., CT, MRI,
PET, SPECT) to produce higher-quality fused images that
combine anatomical and functional details (Xie et al.,
2023; Zhou et al., 2024). By integrating modality-specific
strengths, such as soft-tissue contrast from MRI, bone de-
lineation from CT, metabolic activity from PET, and blood
flow information from SPECT, MMIF reveals subtle anatom-
ical structures and pathological features that may be missed
when examining individual modalities in isolation. This
enhanced visualization capability significantly improves
clinical applications, including tumor boundary localiza-
tion (Chen et al., 2024) and radiotherapy treatment plan-
ning (Safari et al., 2023; Xie et al., 2023). The clinical
necessity for MMIF arises from the inherent limitations of
single-modal imaging systems. Due to hardware constraints
and physical imaging principles (Xie et al., 2023), individ-
ual modalities can only capture specific aspects of tissue
characteristics (Safari et al., 2023), leading to incomplete
diagnostic information. Consequently, physicians must an-
alyze multiple images from different modalities separately
to obtain a comprehensive understanding, creating a time-
consuming workflow that may lead to information fragmen-
tation and potential diagnostic errors. MMIF addresses this
challenge by integrating complementary information into a
single, comprehensive image that preserves the most rele-
vant features from each modality, thereby supporting more
accurate and efficient diagnosis (Wang et al., 2022).

In recent years, deep learning models have significantly
improved multimodal fusion performance through their
powerful representation capabilities, with researchers pri-
marily utilizing convolutional neural networks (CNNs)
for image fusion tasks. Early CNN-based approaches fo-
cused on extracting hierarchical features from multiple
modalities to generate comprehensive fused representations.
DenseFuse (Li & Wu, 2019) introduced an infrared-visible
fusion framework using dense blocks with a CNN backbone.
MSDNet (Song et al., 2019) captures multi-scale features
through various convolutional kernel sizes. (Fu et al., 2021)
proposed a residual pyramid attention network for MRI-CT,
MRI-PET, and MRI-SPECT fusion using a Feature Energy
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Ratio Strategy for latent space fusion that selectively empha-
sizes informative features from each modality. Similarly, (Li
et al., 2022) introduced a double residual attention network
to capture detailed features while avoiding gradient issues.
However, CNN-based models remain limited by their in-
herent local receptive fields, which restrict their ability to
capture long-range spatial dependencies.

Transformer models (Vaswani et al., 2017) have recently
attracted increasing attention by addressing CNNs’ limita-
tions in global feature extraction through their powerful self-
attention mechanisms. For example, (Ma et al., 2022) pro-
posed SwinFusion, which combines CNN and Transformer
models to capture local information while integrating global
complementary features from both domains. Similarly, (Xie
et al., 2023) proposed a multiscale CNN with residual Swin
Transformer layers for effective feature learning from both
domains. However, the quadratic computational complex-
ity O(N?) of self-attention mechanisms creates prohibitive
costs for clinical applications with large images, limiting
the practical deployment of transformer-based methods de-
spite their superior performance over CNN approaches. Re-
cently, the improved selective structured state space models
(Mamba) (Gu & Dao, 2023) provide a novel solution by out-
performing Transformers in long-term dependency model-
ing through selective global information learning with linear
complexity (O(IV)). Several studies have already leveraged
Mamba in medical vision tasks, including classification (Yue
& Li, 2024), segmentation (Xing et al., 2024; Li et al., 2025;
Ma et al., 2024), and multimodal fusion (Li et al., 2024,
Xie et al., 2024), achieving superior performance over CNN
and Transformer counterparts. Despite these advancements,
existing Mamba-based approaches primarily utilize Mamba
blocks for feature learning while neglecting discriminative
fine-grained local features that CNNs excel at capturing.
Moreover, most fusion methods lack validation on clinical
downstream tasks, limiting their real-world applicability.
Therefore, developing a computationally efficient model
that achieves superior fusion performance and demonstrates
clinical effectiveness remains crucial.

To this end, we propose a novel end-to-end framework com-
bining CNN and Mamba for multimodal medical image
fusion. Our approach introduces: (1) Dilated Gated Convo-
lution Blocks (DGCB) for multi-scale discriminative feature
extraction, (2) a latent Mamba model for global feature in-
teractions in the latent space, and (3) cross-channel attention
for decoding fused features to image space. The method
achieves superior texture preservation with reduced infor-
mation loss, outperforming state-of-the-art fusion methods
both qualitatively and quantitatively. Notably, we take a
step further to validate our method for clinical applicability
on high-grade glioma(HGG) vs. Low-grade glioma(LGG)
brain tumor classification, a critical task for precision diag-
nosis and prognosis, followed (Zhou & Khalvati, 2024). To

summarize, our contributions are as follows:

1. We introduce an end-to-end hybrid framework com-
bining CNNs and Mamba to effectively model both
local spatial features and long-range dependencies in
medical images.

2. We propose Dilated Gated Convolution Blocks for mul-
tiscale feature learning, integrated with latent Mamba
and cross-modal channel attention for seamless cross-
modal information fusion.

3. To the best of our knowledge, we provide the first
benchmark evaluation of Mamba-based fusion methods
on the clinical downstream task for LGG/HGG brain
tumor pathology type classification.

4. Experiments show our proposed method outperforms
several baselines in both quantitative fusion metrics
and qualitative image fidelity, as well as the perfor-
mance on the downstream classification task.

2. Materials and Method

In this section, we present ClinicalFMamba, a novel archi-
tecture for multi-modal medical image fusion (Figure 1).
The model comprises three key components (also detailed in
Section 2.1): (1) a hybrid feature encoder utilizing stacked
dilated gated convolution layers to capture multi-scale lo-
cal features while preserving spatial resolution, (2) a latent
Mamba module that models long-range spatial dependen-
cies and performs cross-modal feature fusion in the latent
space, and (3) a convolutional decoder that reconstructs the
fused representations back to image space.

2.1. Feature Extraction and Image Reconstruction

Hybrid Feature Encoder. The core module in the feature
encoder is the Dilated Gated Convolution Block (DGCB),
designed to efficiently learn local spatial features. The gated
mechanism enables cross-region interactions over feature
maps and controls information transmission between layers,
similar to (Liu et al., 2021). The DGCB processes input
feature maps through two parallel convolution blocks, each
containing normalization, convolution, and activation layers
with 3 X 3 and 1 X 1 kernels, respectively. Element-wise
multiplication between these features enables cross-region
interactions. Subsequently, we combine dilated convolu-
tions (Yu & Koltun, 2015) and pyramid convolutions (Li
et al., 2018) to capture multi-scale features and enhance
discriminative feature extraction capabilities. Dilated con-
volutions expand the receptive field while preserving spatial
resolution, enabling better capture of local information and
fine details. The pyramid convolutions, placed after dilated
convolutions, follow (Zhou et al., 2024) by stacking one
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Figure 1. An overview of the proposed framework. DConv3x3 represents dilated convolution with kernel size 3x3. We use N = 3 for
DGCB, with dilated rate = 1,3,5, respectively, and N = 5 for the latent Mamba model. All Conv+LReLU layers in the decoder have
33 kernel followed by Leaky-ReLU. Note that the YCbCr conversion only applies to SPECT images. Zoom in for a better view.

3x3 convolution, two 3x3 convolutions, and three 3x3
convolutions for multi-scale feature learning process.

Latent Mamba for Feature Fusion. After learning the mul-
tiscale local features, we leverage Mamba’s powerful global
information modeling capabilities to learn long-term depen-
dencies of latent feature regions. Mamba (Gu & Dao, 2023)
introduces the selective scan mechanism (SSM) to filter out
irrelevant and redundant information while retaining rele-
vant information. In this work, we adopt the four-directional
Mamba and Fusion Mamba block (Peng et al., 2024)
for global feature modeling. Four-directional Mamba
block: given an input feature map freay € RIXWXC,
we first apply layer normalization and generate two fea-
ture maps fi ., f2.. € RT*W*C through parallel 1x1
convolutions. Then, f . is flattened along four spatial
directions (shown in upper right of Figure 1), producing
fAL ER2 f13  fi4. in HW x C. These sequences are
processed separately by SSM blocks, yielding four outputs,
Yieat: Yoat: Yooat: Yieat- Finally, we unflatten and com-
bine using element-wise addition to obtain Y € RIXWxC,
Y is then gated by f2_, (e.g., Y - SiLU(f2_,)), and ap-
ply another 1 X 1 convolution to process the final output.
Fusion Mamba block: The Fusion Mamba block enables
cross-modal feature integration by processing dual inputs
asymmetrically. Specifically, the first modality generates the
projection matrices and timescale parameters, while the sec-
ond modality provides the input sequence for selective state-
space processing. The process is the same as above, except

two outputs are expected at the end, Y1, Y2 ¢ RIXWxC,
The gating operation is applied to both, Y1, Y2 separately.
Finally, another 1 x 1 convolution is applied on the combined
output, Y'+Y2 to process the final feature (More details
can be found in Appendix A). The complete latent pro-
cessing pipeline first applies five Four-Directional Mamba
blocks for intra-modal long-range dependency modeling,
followed by one Fusion Mamba block for cross-modal inte-
gration. The resulting fused features are then passed to the
decoder network, detailed below.

Lightweight Image Decoder. The fused latent features
are processed through a convolution block containing three
upsample-convolutional layers with leaky ReL.U activation.
We introduce a cross-modal channel attention (CMCA)
module to capture inter-channel interactions between fused
and original features from both modalities. As shown
in the upper right of Figure 1, the cross-modal chan-
nel attention module operates with two inputs I,..¢ and
Iquery. Both inputs are processed through 3x3 convo-
lutions. For the reference input I,..r, we apply average
pooling (Fayg) and max pooling (Fax) to select impor-
tant channel-wise representations. The combined channel
map, Faet = sigmoid(Favg + Fmax), is then applied
to the query input to preserve complementary information
from both modalities. For bidirectional cross-modal en-
hancement, we perform this operation twice: first using one
modality as reference and the other as query, then swapping
their roles. For example, in CT-MRI fusion, we initially use
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MRI as I,..; and CT as Igyery, then reverse the assignment.
The resulting enhanced features from both operations are
element-wise added to the original latent features before
decoding back to image space.

Loss Function. We employ a multi-component loss func-
tion combining structural similarity (SSIM), pixel inten-
sity, and gradient difference, following (Zhou et al., 2024;
Li et al., 2024; Xie et al., 2024). Unlike previous two-
stage approaches that require separate training and fusion
phases (Zhou et al., 2024; Li et al., 2018; Fu et al., 2021),
our end-to-end framework necessitates a dual-target training
strategy where both input modalities serve as reconstruction
targets. The total loss is formulated as:

Lpizel = || — maz(x1, 22)||1,
Lyraa = |V — maz(Va, V)|,

Losim = (1= SSIM(d, 1)) + (1~ SSTM (i 22)
()

L(e) = A1 * Epixel + Ag % Egrad + A3 % Logim  (2)

where % is the fused image, =1, xo are the input images
from two modalities, SSTM () is the operation to calculate
structure similarity for two images, and we use 1 —SSTM ()
as the loss to optimize. We empirically set \; = 2, Ay =
10, A3 = 5 for all our fusion models.

2.2. Datasets

In this work, we use four datasets to validate the effec-
tiveness of our proposed approach: MRI-CT (184 pairs)
and MRI-SPECT (357 pairs) multi-modality fusion data
sets!, and the BraT$S 2019 dataset (Bakas et al., 2017; 2018;
Menze et al., 2014) (335 patients). Especially for MRI-
SPECT fusion, we converted the SPECT images from the
RGB color space to the YCbCr space following (Fu et al.,
2021; Li et al., 2022; Zhou et al., 2024), using only the Y-
channel images to train the model. All pairs of MRI-CT and
MRI-SPECT images were coregistered and preprocessed
beforehand so that each pixel intensity is in the range of
[0,255]. We further normalized the pixel intensity to [0,1].

For the BraTS dataset, we use the T2 and FLAIR se-
quences as done in (Zhou et al., 2024; Zhou & Khalvati,
2024). We first obtained the ROIs by multiplying the images
with masks, then reshaped the data from 240x240x 155 to
128 %128 % 128, and normalized all pixel intensities to the
range [0,1]. We converted the 3D data to 2D by slicing over
the Axial plane for each patient and only considered slices
with at least 10% non-zero pixels.

"https://www.med.harvard.edu/aanlib/

3. Experiments

All programs were implemented in PyTorch. For both MRI-
CT and MRI-SPECT pairs, we trained the autoencoder for
100 epochs with an initial learning rate of 0.0005 and cosine
decay to le-7, a mini-batch size of 8, and with the Adam
optimizer (Kingma & Ba, 2014). We randomly held out 30
image pairs from the MRI-CT dataset and 50 pairs from the
MRI-SPECT dataset as the standalone test set. To ensure
the robustness of our model, we repeated our experiments
three times and ensured that we had different test sets in
each run.

To assess the usability of our fusion framework, we further
applied our method to a brain tumor classification task be-
tween LGG and HGG using the BraTS 2019 data. First,
we randomly held out 40 patients (20 LGG and 20 HGG
patients, 1152 slices in total) as a standalone test set, en-
suring patient-level separation to prevent data leakage. The
remaining data is used to train our model. We trained our
fusion model for 25 epochs with a constant learning rate of
0.001, a mini-batch size of 16. For the classification model,
we used ResNet-50 for all experiments and trained with
focal loss (Lin et al., 2017) followed by (Zhou & Khalvati,
2024). We trained the model for 50 epochs with a constant
learning rate of 0.001 and a mini-batch size of 8. We ran
the classification experiment for three trials with different
train-validation splits to ensure the robustness and reliability
of our findings.

Baseline Model & Comparison. For a comprehensive
comparison of image fusion results on MRI-CT and MRI-
SPECT data, we evaluated against four state-of-the-art
methods spanning different architectural paradigms: one
CNN-based method, EH-DRAN (Zhou et al., 2024); two
transformer-based methods, SwinFusion (Ma et al., 2022)
and MRSCFusion (Xie et al., 2023); and a Mamba-based
method MambaDFuse (Li et al., 2024). For quantitative
comparisons, we select five commonly used metrics in pre-
vious works (Xie et al., 2023; Li et al., 2022; Fu et al., 2021;
Chen et al., 2024; Safari et al., 2023): Peak signal-to-noise
ratio (PSNR), Structural Similarity (SSIM) (Wang et al.,
2004), Feature Mutual Information (Haghighat et al., 2011),
Feature SSIM (FSIM) (Zhang et al., 2011), and Information
Entropy (EN). For the downstream brain tumor classifica-
tion task, we assessed clinical utility using Area Under the
Curve (AUC), F1-Score, and Accuracy.

4. Results and Discussions
4.1. Image Fusion Results

Main Results. Figure presents qualitative comparisons
of fusion results across three representative MRI-CT and
MRI-SPECT test pairs. For MRI-CT fusion, we focus on
anatomically challenging regions containing rich soft tissue
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Table 1. Comparison between different methods on two test datasets, bold and underline numbers represent best and second-best values

in each dataset, respectively.

Dataset Method PSNRT SSIMT FMI{ FSIM?T ENT

MRI-CT EH-DRAN 16.830£0.490 0.753£0.007 0.883+0.005 0.820£0.003 10.727+0.531
SwinFusion 14.96240.173  0.76840.007 0.882::0.002 0.810+£0.001  8.445+0.078

MRSCFusion 14.476£0.205 0.713+£0.012  0.877£0.006 0.791£0.010  7.544+0.232
MambaDFuse 15.873£0.289  0.771£0.007 0.88240.005 0.817£0.004 15.018-:0.167
ClinicalFMamba(Ours)  16.51940.352  0.783+0.005 0.883+0.003  0.820--0.001 15.213--0.069
MRI-SPECT EH-DRAN 21.455+0.071 0.736+0.002 0.876:£0.004 0.843+0.003 11.970+0.538
SwinFusion 17.557£0.021 0.728+0.004 0.80820.007 0.819+£0.011 13.066-:0.428

MRSCFusion 18.412:£0.211  0.734+0.012 0.82720.009 0.814:£0.006  9.87-0.600
MambaDFuse 21.0214+0.034  0.74840.004 0.845:£0.006 0.829+0.002  14.12640.439
ClinicalFMamba(Ours)  21.56120.067  0.759-£0.009  0.856::0.003 0.848:-0.002 14.871+0.334

information from MRI and dense bone structures from CT
(highlighted in red boxes). Effective fusion should preserve
both the high-contrast skeletal features from CT and detailed
soft tissue boundaries from MRI. Our qualitative analysis
reveals distinct limitations across baseline methods. EH-
DRAN exhibits significant contrast degradation, producing
smoothed intensity distributions that compromise both MRI
tissue detail and CT structural information. MRSCFusion
demonstrates inconsistent performance, generating artifacts
with undesirable pixel intensities while failing to preserve
critical anatomical details such as brain contours and tis-
sue boundaries, particularly evident in the middle sample
(Figure). Although SwinFusion better preserves MRI tissue
characteristics compared to MRSCFusion, it fails to main-
tain adequate contrast differentiation between modalities, re-
sulting in washed-out structural boundaries. MambaDFuse
suffers from substantial detail loss in MRI-derived regions
and exhibits severe contrast distortion. In contrast, our pro-
posed method demonstrates superior preservation of both
modality-specific features and inter-modal contrast. The
fused images exhibit edge definition between tissue types
while maintaining fine-grained anatomical details from both
input modalities (the first and last sample in Figure ). Our
approach achieves more natural-appearing intensity distri-
butions with improved overall contrast that facilitates better
visual interpretation of anatomical structures.

For the MRI-SPECT fusion task, we focus on regions ex-
hibiting rich functional information from SPECT and com-
plementary structural details from MRI (highlighted in red
box) for a better comparison. Effective MRI-SPECT fusion
requires a balance between preserving SPECT’s functional
metabolic information and MRTI’s high-resolution tissue in-
formation. Consistent with the MRI-CT results, EH-DRAN
demonstrates poor contrast preservation, failing to main-
tain the distinctive functional signatures present in SPECT
imaging. MRSCFusion introduces significant intensity ar-
tifacts and exhibits substantial loss of MRI texture infor-
mation, potentially obscuring critical anatomical bound-

aries. While SwinFusion achieves reasonable overall fusion
quality, the high-intensity functional regions from SPECT
tend to overwhelm and blur fine-grained MRI structural de-
tails. MambaDFuse shows improved functional information
preservation from SPECT compared to other baselines, but
continues to suffer from detail loss in MRI-derived regions.
Our proposed method demonstrates superior performance
by maintaining an optimal balance between functional and
structural information. The fused images successfully pre-
serve SPECT’s functional characteristics while retaining
MRTI’s detailed anatomical structure and tissue contrast.

The quantitative metrics, computed over three distinct test
sets, are reported with mean values and standard deviations
in Table 1. Our proposed method achieves the best perfor-
mance in terms of SSIM, FMI, FSIM, and Information En-
tropy for the MRI-CT fusion task. The high FMI, FSIM, and
Information Entropy scores indicate that our fused images
maintain superior structural similarity and contain richer
information. Although our method shows a slightly lower
PSNR score compared to EH-DRAN, this may be attributed
to our method’s emphasis on preserving complementary in-
formation rather than pixel-level reconstruction fidelity. In
contrast, our approach balances the contributions from both
MRI and CT images. For the MRI-SPECT fusion task, our
method consistently surpasses baseline methods in PSNR,
SSIM, FSIM, and Information Entropy. Despite a slightly
lower FMI than EH-DRAN, all other metrics demonstrate
that our approach effectively preserves more functional and
morphological information from MRI and SPECT images.
Also, the superior Information Entropy score further con-
firms enhanced information retention from both modalities.
These quantitative results strongly corroborate the qualita-
tive fusion improvements observed in our visual analysis.

Fusion Time. Next, we assess the model complexity by ex-
amining the total number of trainable parameters and the im-
age fusion time for each image pair using the MRI-SPECT
dataset, as detailed in Table 2. The MRI-SPECT dataset is
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EH-DRAN MRSCFusion SwinFusion MambaDFuse

MRSCFusion SwinFusion

Ours

MambaDFuse

Figure 2. Qualitative results for MRI-CT (top three rows) and MRI-SPECT (bottom three rows) fusion task. We randomly select three
sample pairs from both test sets and show the fusion results across different methods. Zoom in for a better view.

Table 2. Comparison between different methods in average infer-
ence time on MRI-SPECT dataset

EH-DRAN  SwinFusion MRSCFusion MambaDFuse Ours
Params(M) 0.50 0.97 23.00 1.34 4.05
Time(s) 1.26 1.31 2.85 0.66 0.96

selected due to its larger number of image pairs and its rep-
resentation of a more complex task, which closely mirrors
real-world scenarios. Our proposed method achieves effi-
cient performance with 4.05M parameters and 0.96 seconds

per image pair, demonstrating a favorable balance between
model complexity and computational efficiency. While
MambaDFuse achieves the fastest inference time (0.66s),
our method maintains competitive speed while providing
superior fusion quality, as demonstrated in our quantitative
results. The results suggest strong potential for real-time
clinical applications.

Ablation Study. We conducted comprehensive ablation ex-
periments to validate the effectiveness of our Cross-Modal
Channel Attention (CMCA) module across MRI-CT and
MRI-SPECT fusion tasks. Our hypothesis is that CMCA en-



ClinicalFMamba: Mamba-based Multimodal Medical Image Fusion for Enhanced Clinical Diagnosis

Table 3. Ablations on the Cross-Modal Channel Attention (CMCA) module on both datasets. Ours w/o represents the model without

CMCA, Ours represents the model described in Section 2

Dataset Method PSNRT SSIMT FMIT FSIMT ENT
MRI-CT  Ours w/o CMCA  15.967+0.211 0.761£0.006 0.876+0.004 0.813+£0.002 14.621+0.527
Ours 16.519-£0.352  0.783:£0.005 0.883::0.003 0.820+:0.001 15.21340.069
MRI-SPECT  Ours w/o CMCA  19.6931£0.162  0.748+0.007 0.853+£0.005 0.839+0.003 14.691+0.323
Ours 21.5614+0.067 0.759:0.009 0.856--0.003  0.848-:0.002 14.871-0.334

hances modality-specific features by leveraging cross-modal
channel importance, enabling the model to adaptively select
the most informative channels for optimal fusion perfor-
mance. Table 3 presents quantitative results comparing
our full model against the baseline (without CMCA). The
integration of CMCA consistently improves performance
across all evaluation metrics on both datasets. Specifically,
we observe substantial improvements in structural preser-
vation metrics such as SSIM by 0.011 and FSIM by 0.009.
These gains demonstrate CMCA’s effectiveness in preserv-
ing complementary structural information from both source
modalities.

4.2. Classification Results

Table 4. Comparison of LGG/HGG brain tumor classification per-
formance between different methods. Values are reported as
mean=standard deviation.

AUCYT F1-Scoret Accuracy?
T2 (1-channel) 0.7224+0.021  0.703+0.018  0.604+0.037
FLAIR (1-channel) 0.7274+0.024  0.701£0.008 0.611+0.017
T2+FLAIR (2-channel) 0.723+0.028 0.7174+0.012  0.640+0.015
EH-DRAN 0.7694+0.003  0.723+0.006  0.640+0.011
ClinicalFMamba 0.790+0.013  0.778+0.023  0.665+0.004

To validate the clinical utility of our proposed fusion frame-
work, we conducted a downstream brain tumor classification
task to distinguish between high-grade glioma (HGG) and
low-grade glioma (LGG). Following (Zhou et al., 2024), we
utilized T2-weighted and FLAIR sequences for this eval-
uation. We compared five different input configurations:
single-modality approaches using either T2 or FLAIR in-
dependently, dual-modality approach using channel-wise
concatenation of T2 and FLAIR, fusion using EH-DRAN
baseline, and our proposed ClinicalFMamba fusion method.
The classification results presented in Table 4 demonstrate
the superior performance of our fusion framework across all
evaluation metrics. Our ClinicalFMamba method achieves
the highest performance with an AUC of 0.790, F1-score
of 0.778, and Accuracy of 0.665, representing substan-
tial improvements over single-modality baselines and dual-
modality concatenation. Notably, our method also outper-
forms the EH-DRAN fusion baseline by 2.1% in AUC and
5.5% in F1-Score, demonstrating the effectiveness of our
fusion strategy. These results validate that our fusion frame-
work successfully integrates complementary information

from T2 and FLAIR modalities, enhancing tumor details
and tissue contrast characteristics that are critical for ac-
curate glioma grading. The consistent performance gains
suggest strong potential for clinical deployment in computer-
aided diagnosis systems for brain tumor assessment.

5. Conclusions

In this work, we proposed a novel end-to-end CNN-Mamba
hybrid architecture for effective multimodal medical image
fusion. We integrated Dilated Gated Convolution Blocks to
capture multiscale fine-grained details from both modalities
and leveraged a latent Mamba model incorporating four-
directional and fusion Mamba blocks to learn long-range
dependencies and perform cross-modal feature integration
in latent space. Unlike the previous two-stage approaches,
our framework eliminates the need for separate fusion pre-
processing, enabling direct end-to-end optimization. Exten-
sive evaluations demonstrate that our method outperforms
several baseline approaches in both subjective visual quality
and objective fusion metrics while achieving real-time pro-
cessing speeds. The significant improvement in downstream
brain tumor classification further validates the clinical utility
of our fusion framework. We envision our approach being
applied to disease localization tasks, radiotherapy treatment
planning, and surgical navigation in real-world clinical set-
tings.

For future work, we plan to extend our method to 3D med-
ical image fusion, as volumetric data is more prevalent in
clinical practice and would enable more comprehensive mul-
timodal analysis.

Impact Statement

This research contributes to the growing field of Al-assisted
medical imaging, potentially reducing diagnostic errors and
improving healthcare delivery efficiency. Real-time multi-
modal image fusion can significantly enhance diagnostic
workflows by providing radiologists with comprehensive
visualizations that combine complementary anatomical and
functional information. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here. While our method improves di-
agnostic accuracy, we acknowledge that Al-assisted diagno-
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sis should complement rather than replace clinical expertise.
The improved fusion quality and downstream classification
performance must be validated through extensive clinical
trials before deployment.
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A. Details on Fusion Mamba Block

To effectively integrate heterogeneous multimodal information, (Peng et al., 2024) extended the original Mamba architecture
to handle dual inputs, introducing the Fusion State Space Model (FSSM). The FSSM block employs an asymmetric
processing strategy where one input modality (z, or z;) generates the projection matrices and timescale parameters (B,
C, A), while the complementary input serves as the sequence for selective scan processing (i, or y, = SSM(A, B, C)(z,
or x)). The complete FusionMamba block incorporates eight FSSM components organized in a symmetric architecture,
with four directional variants for each input modality. Using CT-MRI fusion as an illustrative example, given input feature
maps F,, F, € RTXWXC representing CT and MRI modalities respectively, the block generates two sets of feature
representations for F,, Fj, following the similar procedure done in the four-directional Mamba block:

X% Z% = Conv}:(Norm(F¢,)), Conv: (Norm(F¢,)); 3)

X? Zb = Conv’ (Norm(F? )), Conv! (Norm(F?))). 4)
Next, X and X are flattened along four scanning directions, as shown in the upper right of Figure 1. The resulting
1D sequences are then processed through corresponding FSSM blocks to enable cross-modal information integration and
long-range dependency modeling:

x¢,x? = Flatten;(X“), Flatten; (X"),
i=1,2,3,4. 5)

y?’ yi) = FSSM? (X'i'l7 X?)? FSSM?(X$7 X?)'

where FSSM? and FSSM" represent symmetric processing blocks that handle X and X respectively. The outputs from
these blocks are then processed independently and reshaped back to spatial dimensions, producing two enhanced feature

maps Y, Yt € REXWXC These complementary representations are subsequently combined to generate the final output

Fout:
4 4

Y Yt = Z Unflatten; (y§'), Z Unflatten, (y?),
i=1 i=1
FS, = Convy(Y“ - SiILU(Z%)) + F{, (6)
F?, = Conv’(Y? - SiLU(Z%)) + F?,
Fou = Convy (Fgut + Fgut)'

where C'onv, here represents a 1 x 1 convolution layer.
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